Singlet fission (SF) could significantly alleviate thermalization losses of high-energy photons, thus holding great potential for improving the power conversion efficiency of solar cells. Conventional SF materials requires an intricate control of molecular packing motifs in solid state to achieve efficient multiexciton generation. Small molecule intramolecular singlet fission (iSF) materials has emerged as a promising alternative mechanism and shows great potential for practical device applications. However, the scope of such iSF materials remains rather limited, necessitating innovative molecular design strategies. Herein, we present how a side-chain ionization strategy leads to an iSF chromophore based on the azaquinodimethane (AQM) ring system. Systematic theoretical and spectroscopic analyses reveal that the direct attachment of electron-withdrawing ionic groups to the conjugated AQM core renders the originally fluorescent AQM nonemissive, leading to ionic AQM (iAQM) derivatives capable of ultrafast iSF to populate triplet-like species. Further fine-tuning of the iAQM skeleton imparts subtle intermolecular interactions that are indispensable for the efficient separation of triplet pairs following iSF in the aggregated state. Our findings offer unprecedented insights into molecular design and triplet exciton dynamics, laying the foundation for the discovery of rare molecular iSF materials.