Operando evidence on the chirality-enhanced oxygen evolution reaction in intrinsically chiral electrocatalysts


Electrolytic hydrogen is identified as a crucial component in the desired decarbonisation of the chemical industry, utilizing renewable energy to split water into hydrogen and oxygen. Water electrolysis still requires important scientific advances to improve its performance and lower its costs. One of the bottlenecks in this direction is related to the sluggish anodic oxygen evolution reaction (OER). Producing anodes with competitive performance remains challenging due to the high energy losses and the harsh working conditions typically required by this complex oxidation process. Recent advancements point to spin polarization as an opportunity to enhance the kinetics of this spin-restricted reaction, yielding the paramagnetic O2 molecule. One powerful strategy deals with the generation of chiral catalytic surfaces, typically by surface functionalisation with chiral organic molecules, to promote the chiral-induced spin selectivity (CISS) effect during electron transfer. However, the relationship between optical activity and enhanced electrocatalysis has been established only from indirect experimental evidence. In this work, we have exploited operando electrochemical and spectroscopic tools to confirm the direct relationship between the faster OER kinetics and the optical activity of enantiopure Fe–Ni metal oxides when compared with that of achiral catalysts in alkaline conditions. Our results show the participation of chiral species as reactive intermediates during the electrocatalytic reaction, supporting the appearance of a mechanistic CISS enhancement. Furthermore, these intrinsically chiral transition-metal oxides maintain their enhanced activity in full cell electrolyser architectures at industrially relevant current densities.

Graphical abstract: Operando evidence on the chirality-enhanced oxygen evolution reaction in intrinsically chiral electrocatalysts



Source link

More From Author

IT Sustainability Think Tank: Environmental trends to redefine IT strategies in 2025

Silver-mediated formal [4π + 2σ] cycloaddition reactions of bicyclobutanes with nitrile imines: access to 2,3-diazobicyclo[3.1.1]heptenes

Leave a Reply

Your email address will not be published. Required fields are marked *