Chemical vapour deposition enables large-domain growth of ideal graphene, yet many applications of graphene require the controlled inclusion of specific defects. We present a one-step chemical vapour deposition procedure aimed at retaining the precursor topology when incorporated into the grown carbonaceous film. When azupyrene, the molecular analogue of the Stone-Wales defect in graphene, is used as a precursor, carbonaceous monolayers with a range of morphologies are produced as a function of the copper substrate growth temperature. The higher the substrate temperature during deposition, the closer the resulting monolayer is to ideal graphene. Analysis, with a set of complementary materials characterisation techniques, reveals morphological changes closely correlated with changes in the atomic adsorption heights, network topology, and concentration of 5‑/7‑membered carbon rings. The engineered defective carbon monolayers can be transferred to different substrates, potentially enabling applications in nanoelectronics, sensorics, and catalysis.



Source link

By admin

Leave a Reply

Your email address will not be published. Required fields are marked *