Electrochemically driven carbon–carbon formation is receiving considerable interest in organic synthesis. In this study, we present an electrochemically driven method for the formation of C(sp3)–C(sp3) bonds using readily available allylic carbonates, as well as primary, secondary, and tertiary alkyl bromides as electrophiles. This approach offers a highly selective route for synthesizing a broad range of allylic products with excellent functional group tolerance, all without the need for transition metal catalysts. Remarkably, this method also enables the smooth late-stage functionalization of various natural product- and drug-derived substrates, yielding the corresponding complex allylalkanes.