Protein evolution has emerged as a crucial tool for generating proteins with novel characteristics. A key step in protein evolution is the mutagenesis of protein-coding DNA. Error-prone PCR (epPCR) is a frequently used technique, but its low mutation efficiency often requires multiple rounds of mutagenesis, which can be time-consuming. To address this, we developed a novel DNA mutagenesis strategy termed deaminase-driven random mutation (DRM). DRM utilizes the engineered cytidine deaminase A3A-RL and the engineered adenosine deaminase ABE8e to introduce a broad spectrum of mutations, including C-to-T, G-to-A, A-to-G, and T-to-C, in both the protein-coding strand and the complementary strand. This approach enables the generation of a multitude of DNA mutation types within a single round of mutagenesis, resulting in a higher DNA mutagenic capability than epPCR. The results show that the DRM strategy exhibits a 14.6-fold higher DNA mutation frequency and produces a 27.7-fold greater diversity of mutation types compared to epPCR, enabling a more comprehensive exploration of the genetic landscape. This enhanced mutagenic capability increases the chances of discovering novel and useful mutants. With its ability to produce high-quality DNA products and the superior protein mutant generation capacity, DRM is an attractive tool for researchers seeking to engineer new proteins or improve existing ones.



Source link

By admin

Leave a Reply

Your email address will not be published. Required fields are marked *